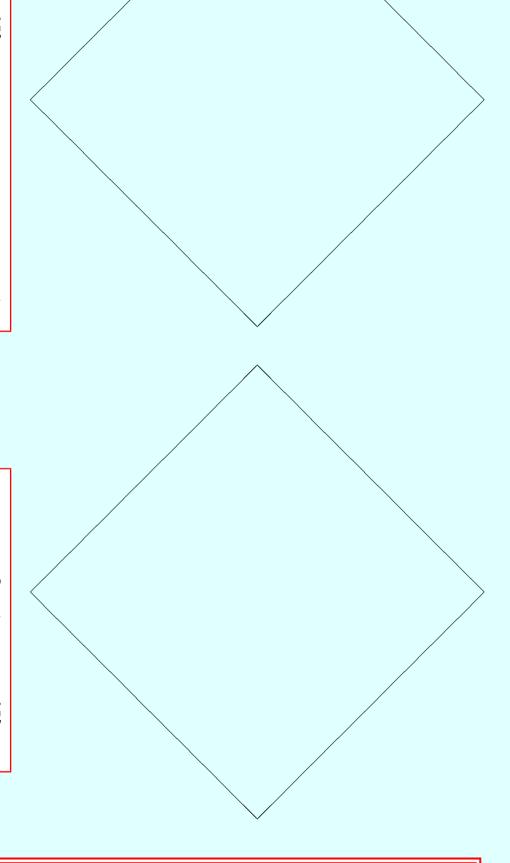
CD-ROM

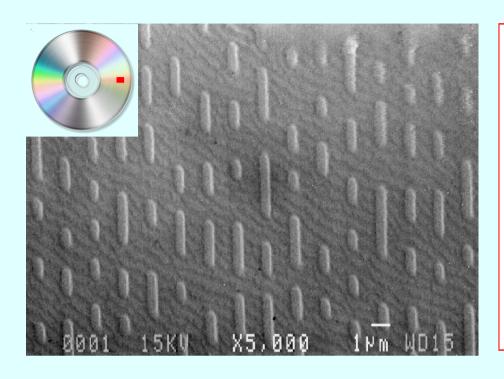
あらかじめ記録されている情報を読 み取れる。

新たに記録することはできない。


- 音楽CD (CD-DA)
- ゲーム機用CD-ROM など

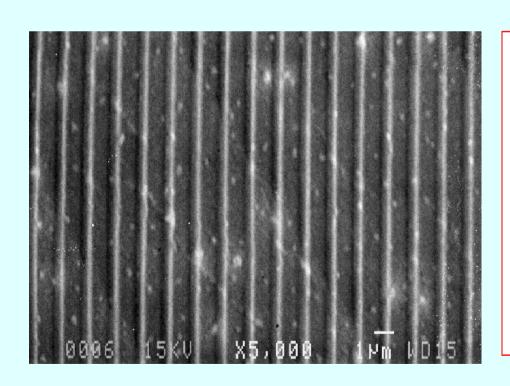
CD-R

最初は何も記録されていない。


好きな情報(音楽や写真など)を記録で きる。

記録した情報を読み取れる。

CD-ROMとCD-Rの違いを『電子顕微鏡』で比べてみよう

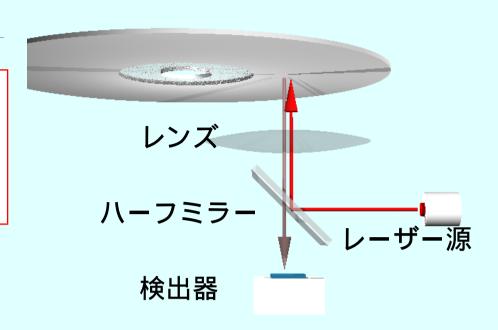

CD-ROMの電子顕微鏡拡大写真

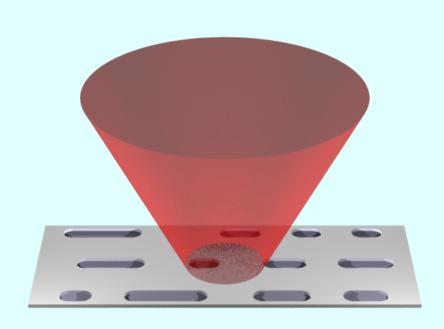
CD-ROMの円周に 沿って、いくつかの 長さのくぼみが整 然と並んでいる。

- 一番短いくぼみ の長さ: 0.83 µm
- くぼみの列と列 の間隔: 1.6 µm

CD-Rの電子顕微鏡拡大写真

CD-ROM のくぼみ の代わりに、円周 に沿ってみぞが整 然と並んでいる。


みぞとみぞの間隔 は、CD-ROM のく ぼみの列と列の間 隔と同じく1.6 μm


どうやって情報を記録したり読み出したりするのだろうか

CDの情報読み取りと記録のしくみ

情報の読み取り

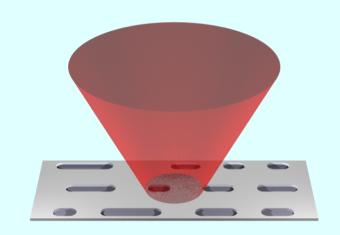
レーザー源から出 たレーザー光線が レンズでCD上の一 点に集められる。

くぼみのある場 所とない場所で、 レーザーの反射強 度が異なる。

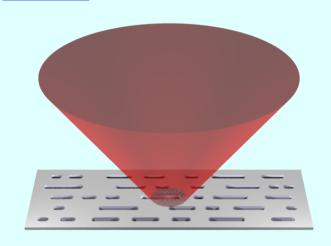
その変化を検出器 で読み取って情報 を再現する。

情報の記録

情報を読み取る時より強いレーザー光線をCD-Rに当てる。


より強いレーザー光線が当たった場所はレーザーの反射強度が変化するので、CD-Rのみぞの中にCD-ROMのくぼみができたのと同じ状態になり、情報が記録される。

光ディスクの進歩


記録密度の進歩

- CD (650 MB)
- DVD (4.7 GB)
- HD DVD (15 GB), Blu-ray Disc (25 GB)

CD

DVD

情報量 音楽約74分 トラック間隔 1.6 μm 最小ピット長さ 0.83 μm レーザー波長 780 nm (赤外)

約74分 情報量 映画約120分(2層) 1.6 μm トラック間隔 0.74 μm 0.83 μm 最小ピット長さ 0.27 μm n (赤外) レーザー波長 650 nm (赤色)

記録方式の進歩

- CD-ROM (読み取り専用)
- CD-R (一回だけ記録可能)
- CD-RW (繰り返し記録可能)